If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+84x-640=0
a = 1; b = 84; c = -640;
Δ = b2-4ac
Δ = 842-4·1·(-640)
Δ = 9616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9616}=\sqrt{16*601}=\sqrt{16}*\sqrt{601}=4\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-4\sqrt{601}}{2*1}=\frac{-84-4\sqrt{601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+4\sqrt{601}}{2*1}=\frac{-84+4\sqrt{601}}{2} $
| 5y-1+y=34+4y-5 | | -24=-4y+2(y-7) | | -3x+6-51x-12=-12x-42-5x+5 | | 2/3*n=-12 | | 12=-16+24t+3 | | 4x/6+5=5= | | ×-10/x=3/4 | | x=0.2(1-0.2) | | Y=4x^2+5-x^2=0 | | 4x^2+5-x^2=0 | | √25x=5 | | 300+5x-x^2=0 | | √25x=1 | | 3x^2/13x^2=1 | | -27(-36)-18=9x+6 | | (x+3)(x+3)-5=0 | | 2x+42=-2(x-1) | | −7x−10=7x+12 | | 7=2x+513 | | 4x^2+0x+78=0 | | X+10+x-15=180 | | 3(1-2y)+2=2 | | 3x-4=2x-13 | | 5/y=1.777777 | | 1/x=2.25 | | 5+2x=30x | | 5+2x=5x | | 4/4-4/4=a | | 2x-75=780 | | 3(x-2)–2(x-1)=-5-4x | | 20=10x-5x | | 2(x+1)+7x=45353 |